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ABSTRACT 

We consider various schemes for cosmological compactification of higher dimensional the- 
ories. We discuss possible instabilities which drive the ground state with static internal 
space to de Sitter-like expansion of all dimensions. These instabilities are due to semi- 
classical barrier penetration and classical thermal fluctuations. For the case of the ten 
dimensional Chapline-Manton action, it is possible to avoid such difficulties by balanc- 
ing one-loop Casimir corrections against monopole contributions from the field strength 
H&f&-p and fermionic condensates. 

1. Introduction 
Attempts to unify gravity with the strong and electro-weak interactions have lead to 

a great deal of interest in theories with extra spatial dimensions’). The most promising 
theories of this type are superstring theories which appear to be consistent only in ten 
dimensions. However, any higher dimensional theory must incorporate the fact that at 
energies presently accessible to accelerators, which csn probe distances of order 10-“cm, 
extra spatial dimensions are unobservable. In addition, these extra dimensions must be 
static since if they vary, fundamental constants will vary. For example, variation in the 
fine structure constant can affect the amount of primordial helium produced at the time of 
nucleosynthesis2). Requiring that these abundances lie within acceptable limits constrains 
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in either superstring or Kaluza-Klein theories the size of the extra dimensions at nucle- 
osynthesis to be very near its equilibrium value. Since the only scale in these theories is 
the Planck scale, it is not unreasonable to suppose that the universe has been effectively 
four dimensional since - 1O-42 seconds after the big bang. At present, it is not known how 
the universe evolved from say ten dimensions to four dimensions plus some presumably 
compact internal space. It appears that such an evolution would require a change in the 
topology of space-time, a highly non-perturbative effect. However, once the universe has 
this product space structure it is possible to study in a cosmological setting how it evolves 
so that the extra dimensions presently form a small, static internal space. 

Our approach to studying the cosmological evolution of the extra dimensions is to 
begin with matter fields defined on a 4 + D dimensional manifold with the ansatz that 
this manifold has the product space structure M4+o = R’ x Q3 x nF=‘=, St, where Q3 
is the physical 3-space with radius a, D = ad and the internal radii are bl , . . . , b,. If we 
introduce a 4+ D dimensional cosmological constant A4+D, and for the present take a = 1, 
then by balancing A4+D against the vacuum stress energy of the matter fields (gravity will 
be treated classically here) the internal D-sphere is stable against small perturbations 
around some equilibrium value, b 0, of the internal radius. This configuration comes about 
by requiring that the minimum energy state be static and have a vanishing A4. 

Compactification stabilized due to the vacuum stress energy of quantum fluctuations 
due to non-trivial boundary conditions, is analagous to the Casimir effect in quantum 
electrodynamics31, while compactification due to classical stress energy can arise from the 
existence of monopole configurations for gauge and matter fields41. 

Though these stabilization schemes are perturbatively stable, it has been demon- 
strated that the ground state manifold is semiclassically unstable-there is a nonzero prob- 
ability for decay via quantum tunneling through a potential barrier51. In addition, at 
non-zero temperature there exists the possibility of classically rolling over the barrier due 
to thermal.fluctuations61. In both cases, the instability is characterized by a de Sitter-like 
expansion of all dimensions. 

The semiclassical instability is the result of adding a cosmological constant to the 
action. However for higher dimensional supergravity theories, such the field theoretic 
limit of the heterotic string, one cannot have a cosmological constant since this explicitly 
breaks supersymmetry. One can achieve a stable compactification in such theories by 
balancing Casimir-like one-loop quantum effects against monopole configurations which 
include contributions from fermionic condensates’). 

In section 2 we will discuss stabilization of the internal space using the higher di- 
mensional cosmological constant and Casimir contribution (monopole contributions give 
similar results). In section 3 we will discuss the situation for ten dimensional supergrav- 
ity where stabilization of the internal space is brought about by balancing Casimir and 
monopole contributions. 

2. Semi-classical and Thermal Instabilities 

The free energy for non-interacting spinless matter fields in thermal equilibrium at 
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temperature T is 

,8T = iln det(-•4+D + p2). (1) 
Here the product space manifold, S’ x S3 x S D, is Euclidean with the time direction 
compactified to a circle of radius P/Za. After regularization, and generalizing to a set of 
spinless, noninteracting fields, the free energy can be approximateds) in the “flat-space” 
limit, a >> b. as 

F = g [cl - c2(2nbT)4 - cQ(2?rbT)4+D] . (2) 

Here fls is the volume of the physical 3-sphere, cr is the Casimir coefficient cN of Candelas 
and Weinberg, while cs and cs are thermal terms. Equation (2.2) has the correct high 
(T > 1/2zb) and low (T < 1/2ab) temperature limits for the free energy. For our product 
space metric, the stress-energy tensor has the form TMN = diag(p, psGij, PDG~“) and the 
components of TMN can be obtained from Eq. (1) using standard thermodynamic relations 
generalized to higher dimensions. Plugging these results into Einstein’s equations, one finds 
that the equation of motion for the b scale factor can be written 

;+(D-1);+3;=- b2 
(D-l) + D(D-1) 

(D+4) 

x [k;2+;g] +$&2,bT)i”“‘]. (3) 

This can be recast as an equation of motion for a scalar field minimally coupled to gravity 
in four dimensions, with potential 

V(Q,T) z(;,;)$~ I; T ;; (@(+‘)(D--2) _ 1) + @-8/D 

1 + :(2mb,,T) D+4 
I 

‘B2 + s(2rboT)D+4 . 
Cl 1 

At temperatures less than some critical temperature, V is unbounded from below for large 
values of @ and has a barrier which separates this region from the vacuum (a = @o) 
with static internal space of radius b = bo and zero cosmological constant. The lifetime of 
the compactified state can be estimated in a straightforward fashion. The semi-classical 
decay rate per unit 4-volume is P = m4exp(S4) where S4 is the four dimensional euclidean 
action for the field @ and m is a determinant with &&scale mpl. For T = 0 and D = 7, 
we can approximate V with V(G) M 
the tunnel action is S4 

0.0Q3A~2 - 0.159A&3/mp~ (here A is A4+D) and 
= 165r&/A. The decay amplitude becomes of order one when 

r = m~~exp(4lm~,/A) 80 that the compactification lifetime will be longer than the present 
age of the universe, r > II;‘, for values of A 5 0.3m& 
be 2 111pr. 

which corresponds to values of 

At finite temperature, V(ip, T) has a local minimum @c when T < Tc,it while for T > 
Tcrit, V(Q, T) monotonically decreases. The barrier height drops as T increases, vanishing 
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at T = Tc,it. As might be expected, classical thermal fluctuations of the compactified 
space are important for temperatures T > l/27& If we require that A4+” 5 0.37&, 
then TH = 1/2xb 5 1.49 x lo-‘mpl, while Tcrit 5 2 x lo-‘mpr. This narrow region of 
interesting temperatures should not be surprising since V(@,T) is such a strong function 
of T. The finite temperature vacuum decay rate is P M S-4exp[-pSs(@,T)]. Now the 
relevent scale for the determinant is l/S and the fact that at finite temperature euclidean 
time is periodic in S allows us to write S4 = SSs and Ss is the three dimensional euclidean 
action (free energy). 

We see that if @ = @e when 2’ > Tcrit, stabilization of the extra dimensions is 
impossible. In the region Tcrit 2 Tcomp 2 TH, where Tcomp is the temperature at which 
@ = @c, then the decay rate is large only for Tcomp - Tcrit and to avoid a destabilizing 
thermal fluctuation, the initial entropy must be made small. This corresponds to a small 
value for A4+D which in turn implies a larger radius for the internal space. Though the 
decay rate is large only for Tcomp - Tcrit, we should note that Tcrit << mpr SO that if 
compactification takes place near the Planck scale, it seems difficult to have hot initial 
conditions in these models. 

3. Stability for Ten-dimensional Supergravity 

Though the instabilities discussed in the last section can be avoided, or at least post- 
poned by adjusting parameters, it would be preferable if such 6ne tuning were not nec- 
essary. That V(@,T) is unbounded from below for large values of @ is a consequence 
of including a cosmological constant in the higher dimensional action. Since we wish to 
consider compactifications in more realistic supersymmetric models, alternate compactifi- 
cation schemes which do not include A4+D and so may not contain instabilities should be 
investigated. 

Type I or heterotic string theories contain N = 1 supersymmetry coupled to N = 1 
super-Yang-Mills in ten dimensions. The action contains an antisymmetric rank-2 tensor 
with an accompanying three-index field strength H. Returning to our product space metric 
with 2 internal S-spheres, we can use the Freund-Rubin ansatzgl for the field strength 
HMNp, giving it a monopole configuration on each of the i = 1, 2 internal 3-spheres: 

H MN0 = mhinipifqt), 

and setting it to zero on the external space. The Bianchi identities then tell us that 
(4 d f(‘)(t) = fe /bi (t). The vacuum stress energy due to monopole configurations will scale 

as l/bid. 
For a manifold R x S3 x SD, with a -+ 00, the Casimir contribution to the vacuum 

stress energy has the form 
F = n3 A + A’h(2v2) 

b4 1 
Here, A and A’ are calculable coefficients, p2 = p2b2, and /I is a regularization scale. In 
odd dimensions, A’ vanishes so that F does not explicitly depend on an undetermined 
parameter. For our purposes, we can neglect the logarithmic dependence on the radius 
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and set the numerator equal to a constant .* Using our product space ansatz, we write the 
Casimir free energy as 

2 A(‘) 
F=%CF. 

i=l 8 

Since the monopole and Casimir energies scale differently, there will be non-trivial values 
of the b; for which the internal spaces are static. However, for models which do not contain 
fermionic condensates, Minkowski space appears as a perturbatively unstable point for the 
equations of motion. 

In the case of the ten dimensional Chapline-Manton actionlo), it is possible to obtain 
a stable compactification. Consider the bosonic part of this action including gluino and 
subgravitino couplings. We set the Yang-Mills field strength to zero and the dilaton to a 
constant u = oo. The internal space is a product of two 3-spheres. In addition we impose 
the Freund-Rubin condition for H MNP and fermionic condensates. These are related to 
each other in a non-trivial fashion through the dilation field equation 

After adding Cssimir terms, setting bl = b2 = b, and resealing coefficients we find that the 
b equation of motion can be written 

4A ;+5;+3ip+s+g 

The coefficient c’ is a function of the monopole strengths of H and the fermionic conden- 
sates. In terms of an effective four dimensional scalar field 4 = fn(b/bo), we can define an 
equation of motion with potential 

V(d) = b,’ -e--24 + m&-6+ + (2To;ic’) ,-lob + ‘“z, “‘1 . (10) 
0 0 

The critical points for this potential are 41 = 0 and 42 = aln[-2bi/(2b$--c’)] with 2bi < c’, 
c’ > 0. For 41 there exists a minimum at bo when 4bt > c’, c’ > 0 or for c’ < 0. For 4s 
we find that Minkowski space is once again a maximum. To realize 41 = 0, set the gluino 
monopole strenth equal to the negative of the H monopole strength. Then c’ = 6bi/5 and 
the effective four dimensional cosmological constant vanishes. No fine tuning is needed to 
realize a stable compactification but in this approach, stability away from the bl = b2 line 
in phase space is unknown. 
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